
This is the author manuscript accepted for publication and has undergone full peer review but has 

not been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/ecy.1215 

This article is protected by copyright. All rights reserved 

Received Date: 10-Mar-2015 

Revised Date: 15-Jun-2015 

Accepted Date: 10-Jul-2015 

Article Type: Articles 

 

MS#15-0416 

Article 

Dynamic occupancy models for explicit colonization processes 

Diffusion occupancy model 

Kristin M. Broms,1,8 Mevin B. Hooten,1,2,3 Devin S. Johnson,4 Res Altwegg,5,6 and Loveday L. 

Conquest7 

1Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort 

Collins, Colorado 80523 USA 

2U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Unit, Fort Collins, Colorado 

80523 USA 

3Department of Statistics, Colorado State University, Fort Collins, Colorado 80523 USA 

4National Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, 7600 Sand 

Point Way NE, Seattle, Washington 98115-6349 USA 

5Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, 

University of Cape Town, Rondebosch 7701, Cape Town, South Africa 

6African Climate and Development Initiative, University of Cape Town, Rondebosch 7701 South 

Africa 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://dx.doi.org/10.1002/ecy.1215�
http://dx.doi.org/10.1002/ecy.1215�
http://dx.doi.org/10.1002/ecy.1215�


This article is protected by copyright. All rights reserved 

7

Manuscript received 10 March 2015; revised 15 June 2015; accepted 10 July 2015. 

School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, 

Washington 98161-2182 USA 

Corresponding Editor: E. G. Cooch. 
8 [nobreaks/] 

Abstract.  
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The dynamic, multi-season occupancy model framework has become a popular tool for 

modeling open populations with occupancies that change over time through local colonizations 

and extinctions. However, few versions of the model relate these probabilities to the occupancies 

of neighboring sites or patches. We present a modeling framework that incorporates this 

information and is capable of describing a wide variety of spatiotemporal colonization and 

extinction processes. A key feature of the model is that it is based on a simple set of small-scale 

rules describing how the process evolves. The result is a dynamic process that can account for 

complicated large-scale features. In our model, a site is more likely to be colonized if more of its 

neighbors were previously occupied and if it provides more appealing environmental 

characteristics than its neighboring sites. Additionally, a site without occupied neighbors may 

also become colonized through the inclusion of a long-distance dispersal process. Although 

similar model specifications have been developed for epidemiological applications, ours 

formally accounts for detectability using the well-known occupancy modeling framework. After 

demonstrating the viability and potential of this new form of dynamic occupancy model in a 

simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres 

tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge 

its distribution and its spread via short distance movement, rather than long-distance dispersal. 

Overall, this new modeling framework provides a powerful tool for managers examining the 

drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance 

from source populations. 

Key words:  

Acridotheres tristis; citizen science; colonization; Common Myna; dynamic occupancy model; 

extinction; invasive species; multi-season model; Southern African Bird Atlas Project; 

spatiotemporal processes; species distribution maps. 
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Introduction 

Invasive species are a problem worldwide: damaging crops, contributing to the loss of 

biodiversity, and causing disturbances. They are generally seen as the second biggest threat to 

biodiversity, after habitat destruction (Wilcove et al. 1998, Pejchar and Mooney 2009), and the 

economic costs to control them are great. For example, the Working for Water program in South 

Africa was recently given a three-year budget of R7.8 billion (~USD660 million) to control 

invasive plants near Cape Town (van Wilgen et al. 2012). Increased knowledge about the causes 

of invasive species’ spread could reduce the damage incurred by giving managers an 

understanding of what is driving their expansion. 

More broadly, ecologists have sought to understand colonization and extinction patterns 

for decades. The dynamic occupancy model (MacKenzie et al. 2003), (alternatively called the 

multi-season occupancy model, has become a widely used model to learn about the colonization 

and extinction processes. Occupancy models rely on a hierarchical framework (either implicit or 

explicit) to account for species that may be present at a site but go undetected. The multi-season 

version of the model specifies occupancy probabilities as functions of colonization and 

extinction probabilities and the occupancy status of a site from the previous time step. However, 

the original version of the multi-season model does not contain an explicit spatial component nor 

a spatiotemporal interaction. Depending on the species and the dynamic process, it may be more 

appropriate to acknowledge within the model that the density of occupied sites and the distance 

between occupied sites will play a role in the colonization of unoccupied sites and the 

persistence of those already colonized. 

Explicit spatiotemporal relationships have been recognized and incorporated in several 

recent variations of the multi-season occupancy model (Bled et al. 2011, 2013, Yackulic et al. 

2012, Eaton et al. 2014, Sutherland et al. 2014). The Yackulic et al. (2012) and Eaton et al. 

(2014) models are most similar to the multi-season model first introduced by MacKenzie et al. 

(2003), but they add an autocovariate term to the colonization and extinction probability 

functions. The models incorporate and estimate coefficients for the autocovariate as if it were a 

fixed effect, and are fit using PRESENCE (MacKenzie et al. 2003). The autocovariate is a 

weighted average of the occupancy probabilities of a site’s neighbors from the previous time 

step. Eaton et al. (2014) expand on the work of Yackulic et al. (2012) by including a provision 
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that the autocovariate is additionally weighted by the proportion of habitat available. For their 

study, they modeled the occurrence of an endangered marsh rabbit in the Lower Keys, Florida, 

USA, where the available habitat is limited and highly fragmented due to development and 

bodies of water. Therefore, habitat information was necessary for their species. Bled et al. (2011, 

2013) incorporated a similar autocovariate, but used a Bayesian framework. Bled et al. (2011) 

weighted the neighbor occupancy status based on sines and cosines to account for directional 

spread, and also extended the MacKenzie et al. (2003) dynamic occupancy model to include 

separate colonization and recolonization parameters. Bled et al. (2013) extended the model by 

having two nested time frames during which there were separate colonization and extinction 

processes. 

Sutherland et al. (2014) took a different approach to incorporating spatial information 

into the dynamic process by relating the colonization and extinction functions to age class 

abundance data and metapopulation theory. This approach leads to their colonization function 

having a different form than the MacKenzie et al. (2003) multi-season model. The Sutherland et 

al. (2014) model assumes that the species of interest has a fragmented metapopulation structure 

and therefore it relies on the availability of abundance data and variation in the distance between 

patches. 

We present a model similar to those just described in that colonization probabilities are a 

function of the number of neighboring sites that are currently occupied, but we develop the 

colonization probabilities from diffusion and advection processes. This induces an explicitly 

mechanistic colonization process that is similar to that of Sutherland et al. (2014), but stems from 

different theory and utilizes different types of data. We adapt a continuous diffusion model to 

detection/non-detection data collected on discrete spatial and temporal units as in Hooten and 

Wikle (2010), but additionally account for imperfect detection. We explicitly account for two 

types of colonization: neighborhood colonization and long-distance dispersal. 

We introduce the model, validate it through a simulation study, and then apply it to study 

the Common Myna (Acridotheres tristis, hereafter “myna”) invasion using data from the second 

Southern African Bird Atlas Project (SABAP 2), which is a large database of bird 

detections/non-detections in southern Africa from 2007 to the present. The myna, a starling 

native to Asia, is one of the world’s worst invasive species (Lowe et al. 2000). It was introduced 
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to Durban, a city in the Southeast corner of South Africa, in 1902 (Peacock et al. 2007), 

stabilized in that region, and then underwent periods of rapid expansion. The myna is now 

widespread in the eastern half of South Africa. The myna’s distribution has been noted 

anecdotally, but the drivers of its expansion have not been studied empirically or statistically. 

Our model is the first statistical model to determine what may be driving the myna’s expansion 

and what its rates of colonization are. The myna may compete with native species; thus our 

inference has important conservation implications. 

Methods 

Models 

We borrow the notation of other Bayesian occupancy models (e.g., Royle and Kéry 2007, 

Royle and Dorazio 2008), and let yi,j,t represent the detection of the species of interest on survey j 

∈ {1, …, Ji,t} of site i ∈ {1, …, m} during time period t ∈ {1, …, T}, and zi,t be the true 

occurrence of the species at site i during time period t. Ji,t is the number of surveys of site i 

during time period t; this number may vary among sites and time periods. M is the number of 

sites for which we will draw inference; only a subsample m of them need to be surveyed to gain 

inference for the entire region. We use T to denote the number of time periods. Each time period 

is assumed to be a closed season during which occupancies do not change. The probability of the 

species occurring at site i during time t is P(zi,t = 1) = ψi,t, which may be a function of site-level 

covariates such as elevation. If the species does occur at site i, then zi,t = 1 and the detection 

probability is P(yi,j,t = 1 | zi,t = 1) = pi,j,t. The detection probability may be a function of site-level 

covariates and survey-level covariates, such as time of day of the survey. Assuming a logit link 

relationship between the detection probabilities and the covariates, the occupancy model is 

, , , , ,~ Bernoulli( )i j t i t i j ty z p  (1) 

, , , ,logit( )i j t i j t pp ′= xβ  (2) 

, ,~ Bernoulli( )i t i tz ψ  (3) 

where xi,j,t

The function associated with the occupancy probabilities, ψ

 is the set of covariates that affect detection for survey j of site i at time t. 

i,t, varies depending on 

whether t = 1 (an initial condition) or if it is a subsequent time period. For the first time period, t 
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= 1, the occupancy probabilities are modeled as in a spatially explicit single-season occupancy 

model such that 

,1 , ,1logit( ) .i i iψ ψ′ψ = + ηxβ  (4) 

In this case, xψ,i,1 is a separate set of covariates from Eq. 2, although a site-specific covariate may 

be a member of both sets. Eq. 4 includes a spatial random effect (ηi

We let occupancy probabilities in subsequent time periods depend on the occurrence 

patterns from the previous time period (Hooten and Wikle 2010). If site i was previously 

occupied, then the probability of it remaining occupied at time t is ϕ

) to account for residual 

spatial patterns that are not captured by the covariates. In analyzing the myna data, we included a 

restricted spatial regression (RSR) random effect (Hughes and Haran 2013, Johnson et al. 2013), 

which is similar to an intrinsic conditional autoregressive (ICAR) variable and is discussed 

further in the Data section. 

i,t, the persistence 

probability. Often occupancy dynamics are written in terms of local extinctions; the persistence 

probability, alternatively called the survival probability, is the complement of the local extinction 

probability and is more commonly used in the Bayesian literature (MacKenzie et al. 2003, Kéry 

et al. 2013). If site i was not occupied in the previous time period and neither were any of its 

neighbors, then the probability of it becoming occupied at time t is γi,t

,i td

, the long-distance 

dispersal probability. If site i was not occupied in the previous time period but at least one of its 

neighbors was, then the probability of it becoming occupied is , the neighborhood 

colonization probability. Thus, the occupancy probabilities are formulated as a mixture: 

( ) ( )( ), ,, 1 , , , , , ,1 1 1
i t i ti t i t i t i t i t i t i tz z I d z I+ψ = φ + − + − − γ

N N
 (5) 

where 
,i t

I
N

 is an indicator variable that equals 1 if site i has at least one neighbor that was 

occupied in year t, and equals 0 otherwise (Hooten and Wikle 2010). 

The persistence probability, ϕi,t, and the long-distance dispersal, γi,t, may be modeled as 

functions of a time- or space-varying covariate, for example: 

, ,0 ,1 , ,logit( )i t i txγ γ γγ = β +β  (6) 

, ,0 ,1 , ,logit( ) .i t i txφ φ φφ = β +β  (7) 
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Additionally, ϕi,t can be a function of the density of nearby occupied sites at the previous time 

step, similar to the neighborhood colonizations that we will describe. In studying the myna 

invasion, we assume that ϕi,t and γi,t are constant across sites and time periods (i.e., ϕi,t = ϕ and 

γi,t ,i td = γ), but we allow the neighborhood colonization probability, , to vary among sites and 

time periods as a function of the number of neighbors that were occupied in the previous time 

step. The choice of neighborhood structure is project specific. For example, it may include all 

sites within a specified distance, or it may be all sites that share a border. In our application, the 

sites have a gridded design and we use the queen’s definition of neighborhood (Fig. 1). In this 

design, most sites have eight neighbors. If a site exists on the edge of the area of inference, it will 

have fewer neighbors; although the model could be expanded to allow for neighborhood 

colonization from outside the study area. The probability of site i being colonized by its 

neighbors is a function of the neighbors previously occupied, such that 

( )( ),, 1 exp log .i t id ′= − −
i t

z 1 d
N

 (8) 

Neighborhood colonization (Eq. 8) is a function of the vectors 
,i t

z
N

and di

,i t
z

N

, both with length 

equal to the number of neighbors of site i (derived in Appendix A). An element k of  equals 

0 if neighbor k was not occupied and equals 1 if the neighbor was occupied at time t. Each 

element k of the colonization vector, di

In the homogeneous neighborhood colonization model, we assume that local colonization 

patterns do not vary across the landscape. This dispersal pattern might indicate that the invasion 

generally happens along a latitudinal or longitudinal trend. The d

, represents the probability of site i being colonized by 

neighbor k. These probabilities are constant across time but may or may not be constant across 

space. They may be modeled in one of two ways: homogeneous or gradient-based colonization. 

i vector is the same for each site 

i, so di

In the gradient-based neighborhood colonization model, the colonizations are functions 

of a covariate and whether site i has better or worse habitat than its neighbors: 

 ≡ d for all i, but each element k of the vector may be a different probability. For example 

(see Fig. 1), if d = (0, 0, 0, 0.05, 0.05, 0.2, 0.2, 0.2)′, it would indicate that the species is 

colonizing its northern neighbors with greater probability. 

,0 ,1 ,logit( ) .d d i= β +βi dd x  (9) 
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The di vectors are different for each site because site i will have different habitat in relationship 

to its neighbors. The xd,i contain the gradient of the habitat variable between site i and its k 

neighbors; each element, xd, i, k, of the vector is equal to site i’s kth neighboring covariate value 

minus site i’s covariate value, divided by the distance between sites to account for the possibility 

of varying distances between neighbors: 

, , .
dist( , )

k i
i k

x x
x

i k

−=d  (10) 

We use the differences in habitat as opposed to the habitat values themselves because the 

differences explicitly account for diffusive flow; it is a discrete approximation of the derivative 

of the potential surface from which the model was derived. Such models have also been used to 

study the spread of diseases (Hooten et al. 2010a) and animal movement (Hooten et al. 2010b, 

Hanks et al. 2011), and are fundamentally linked to the movement of individuals and populations 

(Hooten et al. 2013). Extensions to the gradient-based function (Eq. 9) could include the local 

habitat variables themselves in addition to, or instead of, the differences. In the simpler case, Eq. 

10 could be replaced with xd, i, k = xk for each element k in xd,i

The full models for both the homogeneous and gradient-based colonization, as applied to 

the myna, are presented in Appendix B.1. Appendix B.2 can be used as a glossary for the model 

symbols, and Appendix B.3 provides the associated JAGS (Plummer 2003) code to fit the 

models. 

. 

As with most occupancy models, we assume that the detection probabilities are 

conditionally independent of each other and that there are no false positives (i.e., the possibility 

that a myna was reported as detected but, in truth, did not occupy the site of interest). Although 

these assumptions may not be valid in all situations, the framework we present can be 

generalized to accommodate these measurement discrepancies. 

Data 

The Southern African Bird Atlas Project, SABAP 2, is a large citizen science database of 

bird lists collected by volunteer bird-watchers from July 2007 to the present (available online).1

                                                 
1 http://sabap2.adu.org.za/ 

 

Each bird list represents one survey of one site; non-detections are deduced by a species’ absence 
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from the list. For each survey, a volunteer spends a minimum time period of two hours of 

intensive birding up to a maximum time period of five days conducting each survey and, in that 

time, all habitat types in the grid cell were expected to be visited. 

The sites of SABAP 2 are 5-minute latitude by 5-minute longitude grid cells, 

approximately 8 × 7.6 km each (Harebottle et al. 2007). South Africa is covered by 17 444 of 

these sites. We aggregated the data into quarter degree grid cells (QDGC) to compare our model 

results against an earlier version of the bird atlas project, SABAP 1, which occurred mainly from 

1987 to 1991. Each QDGC is 15-minute latitude by 15-minute longitude and is equal to nine of 

the smaller grid cells. A total of 1946 QDGC cover South Africa. We limited our analyses to the 

eastern half of South Africa plus Lesotho and Swaziland because the myna exists primarily in 

that study area (Fig. 2). Therefore, our analysis included 1068 of the QDGC sites. Each year, 

between 613 and 862 of these sites were surveyed at least once. Maps of the numbers of surveys, 

myna detections, and myna reporting rates by year are provided in Appendix C. 

The myna data are indexed by six time periods, one for each year of data starting in 

January 2008, and ending in December 2013. We fit the diffusion occupancy models to the data 

from January 2008–December 2012, with each year of data representing one time period. We 

held out the 2013 data to compare the diffusion occupancy models’ predictive performance 

against the estimated occupancies from a single-season occupancy model. The number of times 

that sites were surveyed was variable but the median number of surveys per site was five. To 

prevent detection probability coefficients from being dominated by a few well sampled sites, the 

number of surveys per site per year was limited to 15. Preliminary analyses showed that 

inference was not sensitive to this censoring. 

In an exploratory analysis, we identified an initial set of covariates affecting myna 

occurrence by fitting single-season, nonspatial occupancy models for the 2008 data using the 

unmarked package in R (Fiske and Chandler 2011) and used AIC to select the best predictive 

model. The following site-specific covariates were considered: the logarithm of the human 

population density (LOG HUMAN; Balk et al. 2011); the proportion of the site that was 

pastureland (PASTURE; Ramankutty et al. 2010b); the proportion of the site that was cropland 

(CROP; Ramankutty et al. 2010a); the proportion of the site that was in a protected area such as 

a national park or game reserve (PA; Rouget et al. 2004); and the distance from the site’s 
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centroid to the center of the closer of Johannesburg or Durban (DIST). We included these 

variables because it has been proposed that the myna’s distribution is most associated with 

human population density and habitat transformations and because its two source populations 

have historically been Johannesburg and Durban (Peacock et al. 2007). In addition to the site-

specific covariates, the following survey-specific covariates were considered when building the 

detection probability function: the log of the number of hours spent intensively birding for the 

checklist (INTENSIVE); the log of the total numbers of hours spent on the checklist (TOTAL), 

which will include the intensive hours birding plus time spent passively birding; and the number 

of species found on the bird list (NSPP), scaled by its mean and standard deviation. 

After the best nonspatial model for 2008 was selected, a spatial random effect was added 

to the occupancy component of the model. The spatial occupancy models were fit using the stocc 

package in R (Johnson 2013). We added an RSR (restricted spatial regression) random effect to 

account for residual spatial patterns while minimizing the confounding with the fixed effects of 

interest (Broms et al. 2014). RSR is a dimension-reduced version of an intrinsic conditional 

autoregressive (ICAR) model. Thus, our model for the initial time period was 

( )( )1

12

logit( )

~ Normal ,

ψ ψ
−

= +
′σ

ψ X β Kα

α 0 K QK
 (11) 

where K are eigenvectors associated with the Moran operator matrix (Hughes and Haran 2013) 

and Q is the ICAR precision matrix whose elements are −1 if sites are neighbors, 0 if sites are 

not neighbors, and is equal to the number of neighbors of each site along its diagonal. We 

restricted the random effect to include 250 eigenvectors following the recommendations of 

Broms (2013). Further details of the spatial component of this model may be found in Johnson et 

al. (2013) and Hanks et al. (2015). Heuristically, our Kα serves as an autocovariate relating a site 

to the occupancy status of its neighbors. If parameters became nonsignificant with the addition of 

the spatial covariate, they were dropped from the model. We then fit three different diffusion 

occupancy models containing neighborhood colonization probabilities that were specified as 

follows. Two models used the homogeneous neighborhood colonization, one allowed the 

neighbor colonization probabilities to vary among neighbors, and one assumed a constant 

neighborhood colonization in each direction. The other model used the gradient-based 

neighborhood colonization, as in Eq. 9, with human population density as the environmental 
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covariate. For simplicity, we assumed constant persistence and long-distance dispersal 

probabilities across time and space. The covariates that influenced detection were selected with 

the 2008 single season model and then the same covariates were used for the observation process 

for subsequent years. 

Relatively vague priors were specified for all parameters, as described in Appendix B.1. 

We obtained three MCMC chains for 160 000 iterations with a burn-in of 10 000 iterations and a 

thinning rate of 20, resulting in a total of 22 500 samples for each model. The model fits required 

about 31 hours. 

Model Selection 

We compared models using out-of-sample validation with a logarithmic scoring rule to 

assess predictive performance (Gneiting and Raftery 2007, Hooten and Hobbs 2015). We 

predicted 2013 occupancies and detections using the posterior predictive distributions and 

compared these 2013 predictions against the true detections from 2013. In our calculations, we 

only compared sites that had at least one survey conducted in 2013. For each iteration s of the 

MCMC, we calculated the log-score as negative the logarithm of the integrated likelihood: 

( ) ( ) ( )
log

1 1

log[ | , ]
iJM

s s s
ij i ij

i j

L y p
= =

= − ψ∑∑  (12) 

( ) ( ) ( ) ( )

1 1

log( ) (1 )log(1 )
iJM

s s s s
ij i ij ij i ij

i j

y p y p
= =

= − ψ + − −ψ∑∑  (13) 

where M is the number of sites with surveys conducted in 2013 and Ji

( )
log
sL

 is the number of surveys 

associated with that site. The log score was calculated as the posterior mean of . The lowest 

logarithmic score indicated the best predictive model. 

Simulation Study 

We conducted a simulation study to investigate the convergence and inference 

characteristics for the dynamic components of our model. Four scenarios were tested: long-

distance dispersal was either constant or a function of a covariate, and the neighborhood 

dispersal was either homogeneous or gradient based. 

For all scenarios, we assumed a grid of 30 × 30 = 900 sites, of which a random subset of 

75% of the sites were surveyed. Following the approach of Yackulic et al. (2012), we simulated 
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data using a constant detection probability of 0.5 and assumed four surveys per site. Occupancy 

probabilities for the first year were a function of the scaled x-coordinate of the data: 

1logit( ) 1.5 1.5 .= − +ψ x  (14) 

These parameters led to occupancy probabilities ranging from 0.02 to 0.73, with a median 

probability of 0.18. The persistence probability, ϕ, was set as 0.90. 

For half of the simulations, long-distance dispersal, γ, was set at 0.05; for the other half of 

the simulations, it was a function of the scaled x-coordinate: 

logit( ) 3 1= − +γ x  (15) 

leading to a range of long-distance dispersal probabilities from 0.01 to 0.21, with a median of 

0.05. For half of the simulations, neighborhood dispersal was homogeneous, with neighborhood 

colonization probabilities of (0.20, 0.20, 0.02, 0.20, 0.02, 0.02, 0.02, 0.02) for k = 1, …, 8, 

respectively. These probabilities imply that a site was most likely colonized from the northwest 

direction, and its range is therefore expanding in the southeast direction. The other set of 

simulations had gradient-based neighborhood colonizations with 

,logit( ) 2 2 .i= − +i dd x  (16) 

The xd, i

For all scenarios, occupancy probabilities for the first year were fit using: 

 were based on the scaled x-coordinate, and were calculated using Eq. 10. The gradient-

based model had neighborhood colonization probabilities range from 0.005 to 0.79 with a 

median of 0.12. 

1 0logit( ) = β +ψ η  (17) 

where η is an RSR spatial random effect. This model specification was different from the data 

generation to mimic reality in that all environmental variables affecting occupancy may not be 

known or measurable. The code to generate the data and fit the models may be found in the 

Supplement. 

To investigate the sensitivity under differing data scenarios, 10 simulations were 

performed for each scenario. Each model fit included three chains with 5000 iterations each, all 

thinned by five and with a burn-in of 500 samples, leaving a total of 2700 samples for 

approximating posterior quantities. The gradient-based model simulations required 27–30 

minutes and the model with homogeneous neighborhood colonizations required 42–45 minutes 
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on a 3.5 GHz Intel Core i7 desktop computer. Parameter estimates were obtained as the medians 

from the marginal posterior distributions. To determine model performance, relative biases were 

then calculated as 

1

ˆ1
Bias

S
s

sS =
θ −θ= θ∑  (18) 

where the averages are taken over the S simulations. 

Results 

Simulation study 

The simulation study demonstrated that the model performed well for a variety of data 

sets. For all scenarios, the number of sites occupied each year was estimated accurately 

(Appendix D). The persistence probability and detection probability estimates were also 

unbiased. The models were able to recover the directionality of the neighborhood colonizations, 

but the estimates of the long-distance dispersal and neighborhood colonization probabilities were 

variable with no distinct patterns in the biases, suggesting less precision in their estimates. 

Myna results 

The detection probabilities were positively correlated with the number of species 

reported, human population density, and the proportion of the site that was cropland. The 

positive correlation with number of species probably is related to observer skill level. Detection 

was negatively correlated with the proportion of the site that was part of a protected area and the 

distance from Johannesburg or Durban (Table 1). The myna occupancy probabilities of year 

2008 were originally correlated with the distance from Johannesburg or Durban and the 

proportion of the site that was pasture. Once the RSR random effect was included, only the 

distance covariate affected occupancies. The probability of occupancy increased with proximity 

to the city centers (Table 1). 

The dynamic models produced very similar estimates for the parameters that overlapped 

among them. The long-distance dispersal probability was estimated at 0.02, with a 95% credible 

interval of 0.002–0.06 for the homogeneous models and a 95% credible interval of 0.002–0.05 

for the gradient-based model. The persistence probability was estimated at 0.94, with a 95% 

credible interval of 0.92–0.95 for all models. 
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In the homogeneous model with constant neighborhood colonization, the neighborhood 

colonization probability was 0.09, with a 95% credible interval of 0.08–0.11 (Appendix E: Table 

E2). 

In the homogeneous model with varying neighborhood colonizations, those probabilities 

ranged from 0.03 to 0.21 (Appendix E: Table E1). Higher colonization probabilities related to 

neighbors 6 and 7 implies that a site is most likely to be colonized from its southern and 

southwestern neighbors. Therefore, the range of the myna is mostly expanding in the north and 

northeast directions according to this model. 

The gradient-based model with neighborhood colonization as a function of human 

density estimated the neighbor colonization probabilities to range from 0.0005 to 0.12, with a 

median probability of 0.003. The negative coefficient associated with the human population 

suggests that the myna is dispersing away from the large cities into the less populated 

surrounding areas, possibly because the myna populations are already saturated in the more 

heavily populated sites. Fig. 3 provides a visualization of the neighborhood colonizations, 

created from Eq. 9, and shows the potential routes along which the myna expands its range. 

The gradient-based model had the best predictive performance, with a log-score equal to 

2418.75. In contrast, the homogeneous model with homogeneous colonizations had a log-score 

of 2422.09 and the homogeneous model with varying colonizations had a log-score of 2424.72. 

All models estimated an increase in the number of sites becoming occupied over time. 

For the homogeneous model with varying colonizations, the estimated number of sites occupied 

in 2008 was 581 and increased to 785 by the end of 2013 (Appendix E: Table E1), with a rate of 

spread faster in the beginning: 8.6% in year 2008, and ending at 4.2%. The number of new sites 

becoming occupied each year also decreased from a high of 50 new sites from 2008 to 2009, to a 

low of 32 new sites from 2012 to 2013. The homogeneous model with constant colonization was 

very similar (Appendix E: Table E2). For the gradient-based model, the estimated number of 

sites occupied in 2008 was 582 and increased to 780 by 2013 (Table 1, Fig. 4), suggesting rates 

of spread from 8.1% to 4.3% a year. The number of new sites similarly decreased from a high of 

46 to a low of 32 by the end of the study period. The rate of spread had decreased, but remains 

greater than zero. 

Discussion 
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Range expansions are often a focus of mathematical ecologists, but usually in the context 

of continuous space and integrodifference equations (e.g., Skellam 1951, Van den Busch et al. 

1992, Kot et al. 1996, Neubert et al. 2000, Shigesada and Kawasaki 2002). We merged a 

Bayesian occupancy model with a discrete form of diffusion model to learn how an invasive 

species spreads across a landscape, but for data collected on relatively small-scale areal units or 

patches. The colonization process was a function of how many neighbors of a site are occupied 

in the previous time period; a site was more likely to be colonized if more of its neighbors were 

formerly occupied and if it had better habitat than neighboring sites, but a site could also be 

colonized through long-distance dispersal if it did not have occupied neighbors. These explicit 

connections were intuitive and provided insight into the ecological processes. In particular, this 

model was sensible for the myna, a species whose range was believed to be expanding. 

The occupancy model is flexible and is gaining familiarity with ecologists (Bailey et al. 

2014), whereas the Bayesian hierarchical framework allows for latent states and added 

complexity through its conditional probabilities (Hooten et al. 2003, Latimer et al. 2006). This 

framework allowed for occupancy in year 1 to be a function of site-specific covariates and a 

spatial random effect. Because our data collection was initiated after the myna had already begun 

its spread in South Africa, it was important to recognize the relationships that had developed, and 

the spatial autocovariate, incorporated through the RSR random effect, acknowledged that there 

were unmeasured processes additionally affecting the myna’s distribution. 

The derivation of the colonization process from a diffusion model sets our model apart 

from other spatially explicit, dynamic occupancy models (Bled et al. 2011, 2013, Yackulic et al. 

2012, Eaton et al. 2014, Sutherland et al. 2014). However, the different frameworks may be 

complementary, as they represent different underlying mechanisms. Adding an autocovariate to 

the temporal components of the model as in Bled et al. (2011, 2013), Yackulic et al. (2012), and 

Eaton et al. (2014) is computationally convenient, but less mechanistic. This may or may not be 

desired, depending on the data and research questions. Sutherland et al. (2014) used count data 

collected on discrete patches and explicitly modeled the relationship between those patches from 

metapopulation theory. Our model relied on conventional spatiotemporal modeling concepts 

(e.g., Wikle and Hooten 2010, Cressie and Wikle 2011) and mathematical theory for the 

movement of animals (Turchin 1998). 
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One metric derived from our model was a potential surface of spread from the 

neighborhood colonizations (Fig. 3). As far as we are aware, previous studies using multi-season 

occupancy models have not included such gradient maps for the colonization or extinction 

processes. These dispersal gradient maps can inform managers about which sites are more likely 

to be colonized in the future, and hence where to focus containment resources. For the myna, the 

map showed the flow of colonizations and the spread of the myna northward into Zimbabwe, 

eastward into Mozambique and Swaziland, and westward into South Africa’s interior. The 

myna’s range expansion probably will continue along these routes in the near future. Indeed, 

there are incidence records of the myna in parts of Botswana, Zimbabwe, and Mozambique 

(Peacock et al. 2007). 

Previous studies suggest that human population densities and land transformations are 

positively correlated with the myna’s spread (Hugo and Rensburg 2009, Peacock et al. 2007). 

Although there was some evidence from the 2008 model that the proportion of pasture was 

negatively associated with myna occurrences and some evidence from the 2013 model that 

protected areas are negatively associated myna occurrences, these parameters became 

nonsignificant when spatial structure was added to the models. The detection parameters 

suggested that myna were more likely to be detected in more populated areas and croplands, and 

were less likely to be detected in protected areas. These results may be due to observers’ 

expectations of where they might see myna, or it may be due to different abundance levels of 

myna among the landscapes. Therefore, our findings supported the relationship between mynas 

and human population density, but were less conclusive about how land transformations related 

to myna distribution. 

In the models, the long-distance dispersal probability was estimated to be 2% and the 

lower bound of its 95% credible interval was close to 0%. Therefore, most if not all of the 

myna’s range expansion was through its neighborhood colonization. The gradient-based 

occupancy model fit the 2013 data slightly better than did the homogeneous model, lending 

further support to the suggestion that human populations are driving the myna populations. 

However, the coefficient related to human population density was negative, so the myna 

expansion began in areas of high human population density, but then expanded away from 

densely populated areas. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

Finally, the models suggest that the myna’s range continues to expand at a rate of more 

than 4% a year. Because the myna population has not yet stabilized, resource managers should 

continue to be aware of the likelihood of myna expansions, and biologists need to be aware of 

the nonequilibrium resulting from the lack of stabilization when trying to determine occupancy–

environment relationships (Yackulic et al. 2015). 

Many other extensions of our model are possible. For example, the process component of 

the model could be adapted to accommodate other diffusion processes (Wikle and Hooten 2010), 

such as jump-diffusion (e.g., Li et al. 2014). Given that the method is based on a Lagrangian 

implementation of a partial differential equation, it is also possible to use optimal mathematical 

solution methods such as “homogenization” when fitting these models (e.g., Hooten et al. 2013). 

This would be especially useful for longer time series and larger spatial domains than those 

considered in our myna example. In the case of the myna, an invasive species whose range is 

expanding, we focused on the colonization process and included probabilities for extinction and 

for long-distance dispersal. For other species, the neighborhood colonization coefficients may 

vary temporally to reflect colonization patterns that change from year to year; the persistence and 

long-distance dispersal probabilities could be functions of spatial or temporal covariates; and the 

neighborhood colonization probabilities could be a function of more than one environmental 

gradient variable. Alternatively, the models could be extended to better understand extinction 

probabilities by explicitly allowing persistence to evolve dynamically, as we did with the 

neighborhood colonization. 
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Fig. 1. The k = 8 neighbors of a site for data with a gridded design, assuming a first-order, 

queen’s definition of neighborhood, in which most sites have eight neighbors. 

Fig. 2. The black outline in the map shows the sites included in our analyses. The gray 

boundaries delineate the separate countries of Lesotho and Swaziland. Each square is one quarter 

degree grid cell (QDGC) and is approximately 25 km × 25 km. The map shows the total number 

of detections of the Common Myna (Acridotheres tristis) at each site, for all years combined. 

Fig. 3. Gradient surface of neighborhood colonizations. The myna is likely to disperse to the 

darker areas. Gray sites are the sites of known occurrence in 2008. 

Fig. 4. The mean occurrence predictions (occupancy probabilities) for mynas for each site and 

year; these predictions are similar to the conditional occupancy probabilities estimated through a 

likelihood framework. 

Table 1. Parameter estimates from the best-fitting model for the Common Myna (Acridotheres 

tristis) data from Africa, which used gradient-based neighborhood colonizations as a function of 

human density. 

Parameter Median SE 95% CI 

   Lower Upper 

Detection coefficients     

 Intercept −1.81 0.157 −2.14 −1.51 

 NSPP 0.45 0.017 0.42 0.49 

 PA −0.60 0.020 −0.63 −0.56 

 DIST 0.26 0.013 0.23 0.28 

 CROP 0.50 0.116 0.25 0.72 

 LOG_HUMAN −1.35 0.138 −1.63 −1.09 

2008 occupancy coefficients     

 Intercept 5.60 0.810 4.18 7.38 

 DIST −1.84 0.278 −2.45 −1.35 

2008 spatial parameter, σ 5.46 1.091 3.61 7.90 
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Persistence, φ 0.94 0.008 0.92 0.95 

Long-distance dispersal, γ 0.02 0.014 0.002 0.05 

Neighborhood colonization     

 Intercept −2.28 0.110 −2.51 −2.07 

  LOG_HUMAN −0.38 0.206 −0.83 −0.01 

Number of sites occupied     

 Year 2008 582 20.1 544 623 

 Year 2009 628 16.8 597 663 

 Year 2010 670 16.1 640 703 

 Year 2011 707 16.7 675 740 

 Year 2012 748 18.6 712 785 

 Year 2013 780 22.5 735 824 

Note: Abbreviations are NSPP, number of species on the bird list; PA, proportion of the site that 

was in a protected area such as a national park or game reserve; DIST, distance from the site’s 

centroid to the center of the closer of Johannesburg or Durban; CROP, proportion of the site that 

was cropland; LOG HUMAN, logarithm of the human population density. 
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