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Abstract.

The dynamic, multi-season occupancy model framework has become a popular tool for
modeling gpen populations with occupancies that change over time through local tiolosiza
and extinctions. However, few versions of the model edlatse probabilities to the occupancies
of neighbaring sites or patches. We present a modeling framework that incos ploisite
information and is capable of describing a wide variety of spatiotemporal cdioniaad
extinction processes. A key feature of the model is that it is based on a simple set-stalmall
rules describing how the process evolves. The result is a dynamic process ticaboanfar
complicated+largescale features. In our model, a site is more likely to be colonized if mase of
neighbors were,previously occupied and if it provides more appealing environmental
characteristics than its neighboring sites. Additionally, a site withowipaed neighbors may
also becomesgplonized through the inclusion of a ldistance dispersalrocess. Although
similar model.specifications have been developed for epidemiological applicatimas
formally accounts for detectability using the well-known occupancy modeling framewadek. Af
demonstratingsthe viability and potential of this new form of dynamic occupancy model in a
simulation’study, we use it to obtain inference for the ongoing Common Mgnadtheres
tristis) invasion in South Africa. Our results suggest thatbmmon Myna continues to enlarge
its distribution and its spread via short distance movement, rather thadistaugee dispersal.
Overall, this.new modeling framework provides a powerful tool for managers ergrtina
drivers of €olenization including short- vs. lodgstance dispersal, habitat quality, and distance
from sourée"populations.
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Acridotheres tristisgitizen science; colonization; Common Myna; dynamic occupancy model;
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spatiotemporal processes; species distribution maps.
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Introduction

Invasive species are a problem worldwide: damaging crops, contributing to thé loss o
biodiversity, and causing disturbances. They are generally seen as the secondhbéaggédet t
biodiversityyafter habitat destruction (Wilcove etl®98, Pejchar and Mooney 2009), and the
economic/costsito control them are great. For example, the Working for Water pno@auth
Africa was recently given a thrgear budget of R7.8 billion (4SD660 million) to control
invasive plants near Capewbo (van Wilgen et al. 2012). Increased knowledge attmutauses
of invasivesspecies’ spread could reduce the damage incurred by giving managers an
understanding‘of what is driving their expansion.

More/broadly, ecologists have sought to understand colonization and extinction patterns
for decades. The dynamic occupancy model (MacKenzie et al.,Za@8)natively called the
multi-season occupancy mogdbehs become a widely used model to learn about the colonization
and extinction processes. Occupancy neday on a hierarchical framework (either implicit or
explicit) to_ account for species that may be present at a site but go undetectedltFeeason
version ofithe model specifies occupancy probabilities as functions of colonizadion an
extinction'pobabilities and the occupancy status of a site from the previous time step. However
the original.version of the multi-season model does not contain an explicit spat@bment nor
a spatiotemporal interaction. Depending on the species and the dynacasspit may be more
appropriate to acknowledge within the model that the density of occupied sitée atistance
between occupied sites will play a role in the colonization of unoccupied sitdseand t
persistence of those already colonized.

Explicit spatiotemporal relationships have been recognized and incorporated in several
recent variations of the mulseason occupancy model (Bled et al. 2011, 29&8kulic et al.
2012, Eaton.et.al. 2014, Sutherland et al. 2014). The Yackulic et al. (2012) and Eaton et al.
(2014) maodelsare most similar to the mskiason model first introduced by MacKenzie et al.
(2003), butsthey add an autocovariate term to the colonization and extinction probability
functions. The,models incorporate and estimate coefficients for the autocovariate as if it were a
fixed effect, and are fit using PRESENCE (MacKenzie et al. 2003). The autocovariate is a
weighted average of the occupancy probabilities of &sighbors from the previous time

step. Eaton et al. (2014) expand on the work of Yackulic et al. (2012) by including a provision
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that the autocovariate is additionally weighted by the proportion of habitattdgal@r their

study, they modeled the occurrence of an endangered marsh rabbit in the Lower Keys, Florida,
USA, where the available habitat is limited and highly fragmented due to development and
bodies of water. Therefore, habitat information was necessary for their spéetest Bl. (2011,
2013) incorperated a similar autocovariate, but used a Bayesian framework. 8le@@11)
weighted the neighbor occupancy status based on sines and cosines to account foatlirection
spread and-also extended the MacKenzie et al. (2003) dynamic occupancy model to include
separate colonization and recolonization parametéed. & al. (2013) extended the model by
having two nested time frames during which there were separate colonizatiotiacibe
processes:

Sutherland et al. (2014) took a different approach to incorporating spatial information
into the dynamic procesy lbelating the colonization and extinction functions to age class
abundancerdata and metapopulation theory. This approach leads to their colonization function
having a different form than the MacKenzie et al. (2003) multi-season model. The&utles
al. (2014)/madel assumes tliae species of interest has a fragmented metapopulation structure
and therefore it relies on the availability of abundance data and variationdistinece between

patches.

We present a model similar to thqastdescribed in that colonization probabilities are a
function of the number of neighboring sites that are currently occupied, but we develop the
colonization probabilities from diffusion and advection processes. This indnaglicitly
mechanistic colonization procethat is similar to that of Sutherland et al. (2014), but stems from
different theery-and utilizes different types of data. We adapt a continuous diffasatel to
detection/nen-detection data collected on discrete spatial and temporasunitdooten and
Wikle (2010);"but additionally account for imperfect detection. We explicitly acdoutivo

types of colonization: neighborhood colonization and Idisgance dispersal.

We introduce the model, validate it through a simulation study, and then apply it to study
the Commoen MynaAcridotherestristis, hereafter “myna”) invasion using data from the second
Southern African Bird Atlas Project (SABAP 2), which is a large database of bird
detections/non-detections in southern Africa from 2@0the pesent.The myna, a starling

native to Asia, is one of the world’s worst invasive species (Lowe et al. 2000} ihtn@duced

This article is protected by copyright. All rights reserved



to Durban, a city in the Southeast corner of South Africa, in 1902 (Peacock et al. 2007),
stabilized in that region, and then underweatiods of rapid expansion. The myna is now
widespread in the eastern half of South Africa. The myna’s distribution has been noted
anecdotallyput the drivers of its expansion have not been studied empirically or statistically.
Our model.is:the first stistical model to determine what may be driving the myna’s expansion
and what Jts rates of colonization are. The myna may compete with native spesesur

inference has‘important conservation implications.

Methods

Models

We borrow the notation of other Bayesian occupancy models (e.g., Royle and Kéry 2007,
Royle and Dorazio 2008), and i} represent the detection of the species of interest on sprvey
e {1, ..., Jofsitei € {1, ..., m} during time period € {1, ..., T}, andz, be the true
occurenceof.the species at sitduring time period. J;; is the number of surveys of site
during time"period; this number may vary among sites and time peridds.the number of
sites for which®we will draw inferencenly a subsample of them needo be surveyed to gain
inferencefor.the entire region. We Ukt denote the number of time periods. Each time period
is assumed to be a closed season during which occupancies do not change. The probability of the
species occurring at siteluring timet is P(z ; = 1) =y, which may be a function of sitevel
covariates such as elevation. If the species does occur iatlsénz ; = 1 and the detection
probabilitysisP(y;;: = 1|z« = 1) =pi;:. The detection probability may be a functmfrsite-level
covariates and survdgvel covariates, such as time of day of the survey. Assuming a logit link

relationship between the detection probabilities and the covariates, the occupaetysm
Y, ;. ~ Bernoulli@z,p ;) (1)
logit(p, ;) =xB;, , (2)
z . ~ Bernoullity, ) (3)
wherex;; isithe set of covariates that affect detection for supedsitei at timet.

The function associated with the occupancy probabilifigs varies depending on

whethert = 1 (an initial condition) or if it is a subsequent time period. For the first time périod,
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= 1, the occupancy probabilities are modeled as in a spatially explicit sirg@rseccupancy
model such that

logit(y;,) = Xl},i 1y TN (4)

In this casexyi is a separate set of covariates from E@lthough a sitespecific covariate may

be a member of both sets. Eq. 4 includes a spatial random gfjetct &ccount for residual

spatial patterns that are not capturgdhe covariates. In analyzing the myna data, we included a
restricted ‘spatial regressigRSR) random effect (Hughes and Haran 2013, Johnson et al. 2013),
which is similarto an intrinsic conditional autoregresgl@AR) variable and is discussed

furtherin theData section.

We let occupancy probabilities in subsequent time periods depend on the occurrence
patterns from the previous time period (Hooten and Wikle 2010). lif i previously
occupied, then the probability of it remaining occupied a¢tiia ¢;, the persistence
probability. Often occupancy dynamics are written in terms of local extinctiongethsstence
probability,.alternatively called the survival probability, is the complemetiteofatcal extinction
probability:andds more commonly used in the Bayesian literature (MacKenti@03, Kéry
et al. 2013). If sité was not occupied in the previous time period and neither were any of its
neighbors,.then the probability of it becoming occupied at tiime, ;, the longeistance

dispersal probability. If sittewas not occupied in the previous time period but at least one of its

neighborsiwas, then the probability of it becoming occupieﬁtis , the neighborhood

colonizatign prebability. Thus, the occuparmpbabilities are formulated as a mixture:
Wiea =2+ (12, ) 1y, &, +(1-2,) (11, )vis )

where | g==is-anvindicator variable that equals 1 if siteas at least one neighbor that was

occupied in yeatr, and equals 0 otherwise (Hooten and Wikle 2010).

Thespersistence probability;;, and the longkistance dispersal, yi;, may be modeled as

functionssof a timeer spacevarying covariatefor example:
logit(Yi,t) = By,O + By,l)gj t (6)
logit(d)i,t) = Bq),o + B¢,1X¢ it (7)
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Additionally, ¢;; can be a function of the density of nearby occupied sites at the previous time
step, similar to the neighborhood colonizatitimet we willdescribe. In studying the myna

invasion, we assume th@t; and v are constant across sites and time periodsdij.e= ¢ and

vit =7), but we allow the neighborhood colonization probabiIEM, , to vary among sites and

time periods as,a function of the number of neighbors that were occupied in the piewous t

step. The¢choiceof neighborhood stue is project specific. For example, it may include all

sites within a specified distance, or it may be all sites that share a border. In our application, the
sites have a gridded design and we use the queen’s definition of neighborhood (Fig. 1). In this
design, most sites have eight neighbors. If a site exists on the edge of the aezamdenit will

have fewer neighbors; although the model could be expanded to allow for neighborhood
colonization from outside the study area. The probability of §ieeng colonized by its

neighbors is a function of the neighbors previously occupied, such that
d,=1 exp(z, logl d)).(8)
Neighborhooed colonization (Eqg. 8) is a function of the vectgplsanddi, both with length

equal to.theaumber of neighbors of sitdderived in Appendix A). An elemehtof zy,, equals

0 if neighborkwas not occupied and equals 1 if the neighbor was occupied dt Eaeh
elemeni of the colonization vectod;, represents therpbability of sitei being colonized by
neighbork; These probabilities are constant across time but may or may not be consissit ac

space. They. may be modeled in one of two ways: homogeneous or gradient-based colonization.

In theshomogeneous neighborhood colonization model, we assume that local colonization
patterns do not vary across the landscape. This dispersal pattern might indidageithatsion
generally happens along a latitudinal or longitudinal trend.dTkector is the same for each site
i, sod; =dfor.all i, but each elemetktof the vector may be a different probability. For example
(see Fig. 1)if d.= (0, 0, 0, 0.05, 0.05, 0.2, 0.2, 0,2) would indicate that the species is

colonizing.its'northern neighbors with greater probability.

In the gradient-based neighborhood colonization model, the colonizations are functions
of a covariate and whether sithas better or worse habitat than its neighbors:

logit(d;) = BaotByXaj- 9)
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Thed; vectors are different for each site becautes svill have different habitat in relationship

to its neighbors. They; contain the gradient of the habitat variable between aité itsk
neighbors; each element, i, k, of the vector is equal to sits kth neighboring covariate value
minus #e i's covariate value, divided by the distance between sites to account for the pypssibili

of varying distances between neighbors:

Xaik = Gistq k)’

We use the differences in habitat as opposed to the habitat values themselves because the
differences, explicitly account for diffusive flow; it is a discrete approximation of the derivative

of the potential'surface from which the model was derived. Such models have alsoeloeten us
study the spread of diseases (Hooten et al. 0drd animal movement (Hooten et al. 2010

Hanks et al. 2011), and are fundamentally linked to the movement of individuals and populations
(Hooten etsal=2013). Extensions to the gradient-based function (Eq. 9) could includelthe loca
habitat variables themselvesaddition to, or instead ofhe differences. In the simpler case, Eq.

10 could be replaced withy, i, k = xi for each elemerkin Xg;.

The.full.models for both the homogeneous and gradient-based colonization, as applied to
the myna, are presented in Appendix B.1. Appendix B.2 can be used as a glossary for the model
symbols;-and"Appendix B.3 provides the associated JAGS (Plummer 2003) code to fit the

models.

As with.most occupancy models, we assumetti@tietection probabilities are
conditionally independent of each other and that there are no false positivese(pesdibility
that a myna'was reported as detectedibutyuth, did not occupy the site of interest). Although
these assumptions may not be valid in all situations, the framework wetgrasée

generalized to accommodate these measurement discrepancies.
Data
The"Southern African Bird Atlas Project, SABAP 2, is a large citizen science database of

bird lists colleeted by volunteer bird-watchers from July 2007 to teept(available online).*

Each bird list represents one survey of one site;datactions are deduced by a species’ absence

1 http://sabap2.adu.org.za/

This article is protected by copyright. All rights reserved



from the list. For each survey, a volunteer spends a minimum time period of twahours
intensive birding up to a maximum time period of five days conducting each survey and, in that

time, all habitat types in the grid cell were expected to be visited.

The sites of SABAP 2 arefinute latitude by 5-minute longitude grid cells,
approximately8 x 7.6 km each (Harebottle et al. 2007). South Africa is covered4ydl7
these sites."Weraggregated the data into quarter degree grid cells (QDGC) to compare our model
results against an earlier version of the bird atlas project, SABAP 1, widahr@d mainly from
1987 to 1991..Each QDGC is 15-minute latitude byriiddte longitude and is equal to nine of
the smaller.grid cells. A total of 1946 QDGC cover South Africa. We limited our a&salgshe
eastern half of South Africa plus Lesotho and Swazitsewhuséhe myna exists primarily in
that study area (Fig. 2). Therefore, our analysis included 1068 of the QDGC sites. &ach ye
between 613 and 862 of these sites were surveyed at least once. Maps of the numbers of surveys,

myna deteetions, and myna reporting rates by year are provided in Appendix C.

The myna data aredexed by six time periods, one for each year of data starting in
January 2008, and ending in December 2013. We fit the diffusion occupancy models to the data
from January-2008—-December 20&&h each year of data representing one time period. We
held out the 2013 data to compare the diffusion occupancy models’ predictive performance
against'the estimated occupancies from a sisggson occupancy model. The number of times
that sites were surveyed was variable but the median number of surveys per 8ite. Was
prevent detection probability coefficients from being dominated by a few well edmsipés, the
number of surveys per site per year was limited to 15. Preliminary analyses showed that

inference was-not sensitive to this censoring.

In"an exploatory analysis, we identified an initial set of covariates affecting myna
occurrence by fitting single-season, nonspatial occupancy models for the 2008 data using the
unmarked package in R (Fiske and Chandler 2011) and used AIC to select the best gredictiv
model. The fellowing sitespecific covariates were considered: the logarithm of the human
populationdensity (LOG HUMAN; Balk et al. 2011); the proportion of the site that was
pastureland (PASTURE; Ramankutty et al. 281¢he proportion of the site thevas cropland
(CROP; Ramankutty et al. 204)) the proportion of the site that was in a protected area such as

a national park or game reserve (PA; Rouget et al. 2004); and the distance fragighe si
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centroid to the center of the closer of Johannesburg or Durban (DIST). We incluaged thes
variables because it has been proposed that the myna’s distribution is maoatexssath

human population density and habitat transformations and because its two source populations
have histarically been Johannesburg and Durban (Peacock et al. 2007). In addition to the site-
specific covariates, the following survepecific covariates were considered when building the
detection probability function: the log of the number of hours spent intensively birdirgefor t
checklist'(INTENSIVE); the log of the total numbers of hours spent on the checklist (TQTAL)
which will'inelude the intensive hours birding plus time spent passively birdimjthe number

of species found on the bird list (NSPP), scaled by its mean andrstaledéation.

After the best nonspatial model for 2008 was selected, a spatial random effect was added
to the occupancy component of the model. The spatial occupancy models were fit usiogrthe
package in R (Johnson 2013). We added an R&Sricted patial regressiorrandom effect to
account forresidual spatial patterns while minimizing the confounding with the fifesdsedf
interest (Bromsret al. 2014). RSR is a dimenseduced version of amtrinsic conditional
autoregressive (ICAR) model. Thus, our model for the initial time period was

logit(y,) =X, B, + Ka

1y (1)

a-~ Norma(() o’ (K'QK) )
whereK are eigenvectors associated with the Moran operator matrix (Hughes and Haran 2013)
andQ is the ICAR precision matrix whose elements-aréf sites are neighbor§,if sites are
not neighbors;,.and is equal to the number of neighbors of each site along its diagonal. We
restricted the random effect to include 250 eigenvectors following the rezadations of
Broms (2013). Further details of the spatial component of this model may be found in Johnson et
al. (2013) and Hanks et al. (2015). Heuristically, arserves as an autocovariate relating a site
to the occupancy status of its neighbors. If parameters became nonsignificahewiddiion of
the spatial covariate, they were dropped from the model. We then fit three different diffusion
occupancy medels containing neighborhood colonization probabilities that were specified as
follows. Twe models used the homogeneous neighborhood colonizahe allowed the
neighbor colonization probabilities to vary among neighksod,one assumed a constant
neighborhood colonization in each direction. The other model used the gilaatbei-

neighborhood colonization, as in Eq. 9, with human populatgosity as the environmental
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covariate. For simplicity, we assumed constant persistence andigiagce dispersal
probabilities across time and space. The covariates that influenced detection were selected with
the 2008 single season model and then dngescovariates were used for the observation process

for subsequent years.

Relatively vague priors were specified for all parameters, as described in Appendix B.1.
We obtainedhreeMCMC chains for 16000 iterations with a burn-in of 10000 iterations and a
thinning rate of 20, resulting in a total of W samples for each model. The model fits required

about 31 hours.
Model Selection

We eompared models using outs#mple validation with a logarithmic scoring rule to
assess predictive performance (Gneiting and Raftery 2007, Hooten and Hobbs 2015). We
predicted 2013 occupancies and detections using the posterior predictive distridnutions
compared these 2013 predictions against the true detections from 2013. In our calculations, w
only compared:sites that had at least one survey conducted in 2013. For each $tefdtien
MCMC, we'calculated the legcore as negative the logarithm of the integrated likelihood:

M
Loy = 2.2 loglyd .p1(12)
i=1 j=1
Mg
= _z yijlog (\Vi(S) pl(jS))+ - Yi )log (1~ \Ifi(S) piES) ) (13)
i=1 j=1

whereM is‘the number of sites with surveys conducted in 2013J@isdthe number of surveys

associated with that site. The log score was calculated as the posterior m%in of . The lowest

logarithmicscore indicated the best predictive model.
Simulation Study

Wereonducted a simulation study to investigate the convergence and inference
characteristics for the dynamic components of our model. Four scenarios were tested: long
distance dispersal was eitfeonstant or a function of a covariate, and the neighborhood

dispersal was either homogeneous or gradient based.

For all scenarios, we assumed a grid of 30 x 30 = 900 sites, of which a random subset of

75% of the sites were surveyed. Following the approach of Yackulic et al. (2012), watadnul
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data using a constant detection probability of 0.5 and assumed four surveys per site. @ccupanc
probabilities for the first year were a function of the scaledordinate of the data:
logit(y,) = -1.5+ 1.5 .(14)

These parameters led to occupancy probabilities ranging from 0.02 to 0.73, with a median

probability of 0.18. The persistence probabiliiywas set as 0.90.

Forhalf.of the simulations, londjstance dispersal, y, was set at 0.05; for the other halbf

the simulatiens; it was a function of the scatezmbordinate:
logit(y) = -3+ 1Xx (15)
leading to a range of long-distance dispersal probabilities from 0.01 to 0.21, withaamrokdi
0.05. For half of the simulations, neighborhood dispersal was homogeneous, with neighborhood
colonization praebabilities of (0.20, 0.20, 0.02, 0.20, 0.02, 0.02, 0.02, 0.02¥ftr ..., 8,
respectively. These probabilities imply that a site was most likely colonized from the northwest
direction, and its range is therefore expanding in the southeast direction. The todiier se
simulationsshad'gradiefiiased neighborhood colonizations with
logit(d,) = -2+ 2, . (16)

Thexqy i were based on the scatedoordinate, aneverecalculated using Eqg. 10. The gradient-
based model-had neighborhood colonization probabilities range from 0.005 to 0.79 with a
median of 0.12.

For all. scenarios, occupancy probabilities for the first year were fit using:
logit(y,) =B, +m (17)
wheren isfan RSR spatial random effect. This model specification was different from the data
generation to mimic reality in that all environmental variables affgcccupancy may not be
known or measurable. The code to generate the data and fit the modéls foagd in the

Supplement.

Tavinvestigate the sensitivity under differing data scenati@simulations were
performed foreach scenario. Each model fit inclutieeechains with 5000 iterations each, all
thinned byfive and with a burn-in of 500 samples, leaving a total of 2700 samples for
approximating posterior quantities. The gradient-based model simulations required 27-30

minutes and the model with homogeneous neighborhood colonizations requidéddipdtes
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on a 3.5 GHz Intel Core i7 desktop camgr. Parameter estimates were obtained as the medians
from the marginal posterior distributions. To determine model performandeedimses were

then calculated as

0, -6

1 S
Bias==)" (18)
Sa

where the averages are taken over3kenulations.
Results
Simulationstudy

Thersimulation study demonstrated that the model performed well for a variety of data
sets. For all'scenarios, the number of sites occupied each year was estimated accurately
(Appendix D). The persistence probability and detegbiabability estimates were also
unbiased. The.models were able to recover the directionality of the neighborhoodatmngjz
but the estimates of the long-distance dispersal and neighborhood colonization prebalste

variable with'n@ distinct padtns in the biases, suggesting less precision in their estimates.

Mynaresults

The detection probabilities were positively correlated with the number of species
reported,"Auman population density, and the proportion of the site that was cropland. The
posiive correlation with number of specipsobablyis related to observer skill level. Detection
was negatively correlated with the proportion of the site that was part of atpdoseea and the
distance from Johannesburg or Durban (Table 1). The myna occupancy probabilities of year
2008 were originally correlated with the distance from Johannesburg or Durbdreand
proportion of.the site that was pasture. Once the RSR random effect was inchigéae o
distance covariate affected occupancies. The priyati occupancy increased with proximity

to the city centers (Table 1).

The dymamic models produced very similar estimates for the parameters that overlapped
among them. The londistance dispersal probability was estimated at,0viiB a 95% credible
interval of 0.002-0.06 for the homogeneous models and a 95% credible interval of 0.002—0.05
for the gradienbased model. The persistence probability was estimated atv94 95%
credible interval of 0.920.95 for all models.
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In the homogeneous model with constant neighborhood colonization, the neighborhood
colonization probability was 0.09, with a 95% credible interval of 0.08-0.11 (Appendatie
E2).

In.the homogeneous model with varying neighborhood colonizations, those probabilities
ranged from 0:03 to 0.21 (Appendix Eable E1). Higher colonization probabilities related to
neighbors-6rand-7:implies that a site is most likely to be colonized from its souttern an
southwestern neighbors. Therefore, the range of the myna is mostly expanding in the north and

northeast directions according to this model.

The gradient-based model with neighborhood colonization as a function of human
density estimated the neighbor colonization probabilities to range from 0.0005 to 0.12, with a
median prebability of 0@3. The negative coefficient associated with the human population
suggests thatsthe myna is dispersing away from the large cities into the less populated
surrounding areas, possibly because the myna populations are already saturatedni@ the m
heavily poplated sites. Fig3 provides a visualization of the neighborhood colonizations,

created from EqQ. 9, and shows the potential routes along which the myna expands its range.

The gradienbased model had the best predictive performamitie a logscore equaio
2418.75. Inseontrast, the homogeneous model with homogeneous colonizations hacoadog-
of 2422.09 and the homogeneous model with varying colonizations had a log-score of 2424.72.

All models estimated an increase in the number of sites becomingied@yer time.
For the hamogeneous model with varying colonizations, the estimated number of sitestbccupi
in 2008 was’581 and increased to 785 by the end of 2013 (Appendix E: Table E1), with a rate of
spread faster in the beginnir®)6% in year 2008, and ending at 4.2%. The number of new sites
becomingsoccupied each year also decreased from a high of 50 new sites from 2008 to 2009, to a
low of 32 newssites from 2012 to 2013. The homogeneous model with constant colonization was
very similars@&ppendix E:Table E2). For the gradient-based model, the estimated number of
sites occupied in 2008 was 582 and increased to 780 by 2013 (Table ), Siggésting rates
of spread from:8.1% to 4.3% a year. The number of new sites similarly decreased fgbnofa hi
46 to a low of 32 by the end of the study period. The rate of spread had dedratsetains

greater than zero.

Discussion
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Range expansions are often a focus of mathematical ecoldyistssually in the context
of continuous space and integrodifference equations (e.g., Skellam 1951, Van den Busch et al.
1992, Kot et al. 1996, Neubert et al. 2000, Shigesada and Kawasaki 2002). We merged a
Bayesian occupancy model with a discrete form of diffusion model to learn how aivénvas
species sprea@cross adndscape, but for data collected on relatively ss@dle areal units or
patches. The colonization process was a function of how many neighbors of a siteipiedoc
in the previous'time period; site was more likely to be colonized if more of its neaykwere
formerly occupied and if it had better habitat than neighboring sites, but a site lsoube a
colonizedithrough long-distance dispersal if it did not have occupied neighbors. These expli
connections were intuitive and provided insight ifte €cological processes. In particular, this

model was'sensible for the myna, a species whose range was believed to be expanding.

The occupancy model is flexible arsdgaining familiarity with ecologists (Bailey et al.
2014),whereas'the Bayesian hierarchical framework allows for latent states and added
complexity‘through its conditional probabilities (Hooten et al. 2003, Latimer et al. 2008). T
framework allowed for occupancy in year 1 to be a function ofsgigsific covariates and a
spatial random effect. Because our data collection was initiated after the myna had already begun
its spread in"Seuth Africa, it was important to recognize the relationships that had devataped
the spatial.autocovariate, incorporated through the RSR random effecywdetiged that there
were unmeasured processes additionally affecting the myna’s distribution.

The derivation of the colonization process from a diffusion model sets our model apart
from other spatially explicit, dynamic occupancy models (Bled et al. 2011, ZatBulic et al.
2012, Eatonset-al. 2014, Sutherland et al. 2014). However, the different frameworks may be
complementary; as they represent different underlying mechanisms. Adding an audtedyar
the temporal®components of the model as in Btead. 2011, 2018 Yackulic et al. (2012), and
Eaton et al. (2014) is computationally convenient, but less mechanistic. This may or may not be
desired, depending on the data and research questions. Sutherland et al. (2014) used count dat
collecteéd.on disrete patches and explicitly modeled the relationship between those patches from
metapopulation theory. Our model relied on conventional spatiotemporal modelirgptsonc
(e.g., Wikle and Hooten 2010, Cressie and Wikle 2011) and mathematical theory for the
movement of animals (Turchin 1998).
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One metric derived from our model was a potential surface of spread from the
neighborhood colonizations (Fig). 2As far as we are aware, previous studies using{$egison
occupancy models have not included such gradient maps for the colonization or extinction
processes. These dispersal gradient maps can inform managers about which sites are more likely
to be colonized in the future, and hence where to focus containment resourcesniyorahine
map showed the flow of colonizations and the spread of the myna northward into Zimbabwe,
eastward into'Mozambique and Swaziland, and westward into South Africaierinidre
myna’s range expansion probably will continue along these routes in the near futuré,. Indee
there ae incidence records of the myna in parts of Botswana, Zimbabwe, and Mozambique
(Peacock et al42007).

Previous studies suggest that human population densities and land transformations are
positively correlated with the myna’s spread (Hugo and Rensburg 2009, Peacock et al. 2007).
Although thereswas some evidence from the 2008 model that the proportion of pesture
negatively-associated with myna occurrences and some evidence from the 2013 model that
protected/areas are negatively associated myna occurrences, these parameters became
nonsignificant when spatial structure was added to the models. The detection paramete
suggested that.myna were more likely to be detected in more populated areas ands;rapth
were less likely,to be detected in protected areas. These results may be due to observers’
expectations of where they might see myna, or it may be due to different abundanc#f levels
myna amongrthe landscapes. Therefore, our findings supported the relationship between mynas
and human population detysibut were less conclusive about how land transformations related

to myna distribution.

Inthesmedels, the longdistance dispersal probability was estimated to be 2% and the
lower boundofits 95% credible interval was close%a Uherefore, most if natll of the
myna’s range expansion was through its neighborhood colonization. The glzaedt-
occupancy model fit the 2013 data slightly better than did the homogeneous model, lending
further support to the suggestion that human populations are ditidnmgyna populations.
However, the coefficient related to human population density was negative, so the myna
expansion began in areas of high human population density, but then expanded away from

densely populated areas.
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Finally, the models suggest thaetimnyna’s range continues to expand at a rate of more
than 4% a year. Because the myna population has not yet stabilized, resource manaders shoul
continue to be aware of the likelihood of myna expansions, and biologists need to be aware of
the nonequilibrium resulting from the lack of stabilization when trying to determingaccy—

environment.relationships (Yackulic et al. 2015).

Many=other extensions of our model are possible. For example, the process component of
the model.could be adapted to accommodate other diffusion processes (Wikle and Hooten 2010),
such as jumyaliffusion (e.g., Li et al. 2014). Given that the method is based on a Lagrangian
implementation of a partial differential equation, it is also possible to use optimal mathematical
solution methods such as “homogenization” when fitting these models (e.g., Hooten et al. 2013).
This would be especially useful for longer time series and larger spatialrdotinan those
considered in our myna example. In the case of the myna, an invasive sgesesange is
expandingywefocused on the colonization process and included probabilities for extinction and
for long-distance dispersal. For other species, the neighborhood colonization cusfficasy
vary temporally.to reflect colonization patterhattchange from year to year; the persistence and
long-distance dispersal probabilities could be functions of spatial or temposailates; and the
neighborhood«colonization probabilities could be a function of more than one environmental
gradientvariale: Alternatively, the models could be extended to better understand extinction
probabilities by explicitly allowing persistence to evolve dynamicakywe did with the
neighborhoed-colonization.
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Fig. 1. Thek = 8 neighbors of a site for data with a gridded design, assuming a first-order,
gqueen’ssdeifimition of neighborhood, in which most sites have eight neighbors.

Fig. 2. The black outline in the map shows the sites included in our analyses. The gray
boundariessdelineate the separate countries of Lesotho and Swaziland. Each square is one quarter
degree grideeelk(QDGC) and is approximately 25 km x 25 km. The map shows theutotar

of detectigns ofithe Common MynAcfidotherestristis) at each sitefor all years combined.

Fig. 3. QGradient surface of neighborhood colonizations. The myna is likely to dispénse t

darker areas, Gray sites are the sites of known occurrence in 2008.

Fig. 4. The"mMean occurrence predictions (occupancy probabilities) for mynashaiteaand
year;these predictions are similar to the conditional occupancy probabilitiesgtsd through a

likelihood framework.

Table 1. "Rrameter estimates from the béging modelfor the Common MynaAcridotheres
tristis) datafrom Africa, which used gradieriiaged neighborhood colonizations as a function of
human density.
Parameter Median SE 95% CI

Lower Upper
Detection go&fiicients

Intercept -1.81 0.157 —-2.14 -1.51
NSPP 0.45 0.017 042 049
PA —0.60 0.020 -0.63 —0.56
DIST 0.26 0.013 0.23 0.28
CROP 0.50 0.116 0.25 0.72
LOG_HUIMAN -1.35 0.138 -1.63 -1.09
2008 occupangcyoefficients
Intercept 5.60 0.810 4.18 7.38
DIST -1.84 0.278 245 -1.35

2008 spatial parameter, 5.46 1.091 361 7.90

This article is protected by copyright. All rights reserved



Persistence) 0.94
Long-distarce dispersaly 0.02
Neighborhood colonization

Intercept -2.28
LOG_ N —-0.38
Number o cupied
Year2008™ 582
Year 2 628

Year 2(@ 670
Year Zm 707
Year 2 748

Year 2013 780

0.008
0.014

0.110
0.206

20.1
16.8
16.1
16.7
18.6
22.5

0.92
0.002

—2.51
—0.83

544
597
640
675
712
735

0.95
0.05

—2.07
—0.01

623
663
703
740
785
824

Note: Abbﬁons are NSPRumber of species on the bird JiBYA, proportion of the site that

was in a

ed area such as a national park or game ré3&Vedistance from the site’s

centroid tﬁenter of the closer of Johannesburg or DuaR@P proportion of the site that

was Cro

=
O
-
-
<
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G HUMAN, logarithm of the human population density.
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